358 COMBINATORIAL SEARCHING

Lexicographic generation. Table 1 shows combinations g
¢ ...cy in lexicographic order, which is also the lexicographic o
Notice that the dual combinations by ...b; and the correspong;
Pt ---Po, G - - - Qo then appear in reverse lexicographic order,
Lexicographic order usually suggests the most convenient
combinatorial configurations. Indeed, Algorithm 7.2.1.2L aln
problem for combinations in the form a,_;...aiaq, since (&Z
in bitstring form are the same as permutations of the multiset .
general-purpose algorithm can be streamlined in obvious ways .
to this special case. (See also exercise 7.1.3-20, which present
sequence of seven bitwise operations that will convert any give
(@n—1...a1a0)2 to the lexicographically next ¢-combination,
does not exceed the computer’s word length.) !
Let’s focus, however, on generating combinations in the othe:

¢t ...cac1, which is more directly relevant to the ways in which c
often needed, and which is more compact than the bit stringé
compared to n. In the first place we should keep in mind that a
of nested loops will do the job nicely when t is very small. For
t = 3 the following instructions suffice: ‘
For ¢c3 =2, 3, ..., n—1 (in this order) do the followi g

For ¢ =1,2, ..., c3 — 1 (in this order) do the follows

For ¢; =0, 1, ..., co — 1 (in this order) do the follow

Visit the combination c3cacy. i

(See the analogous situation in 7.2.1.1—(3).) v
On the other hand when ¢ is variable or not so small, ¥
combinations lexicographically by following the general recipe
Algorithm 7.2.1.2L, namely to find the rightmost element ¢; that
and then to set the subsequent elements cj_;...c; to their s
values:

Algorithm L (Lezicographic combinations). This algorithr m
combinations ¢;...cac; of the n numbers {0,1,...,n — 15 St
Additional variables c;+1 and c;y2 are used as sentmels

L1. [Initialize.] Set ¢; +— j — 1 for 1 < j < t; also set ¢ci41 <& “
L2. [Visit.] Visit the combination c; ... cacy. ‘

L3. [Find j.] Set j + 1. Then, while ¢; +1 = c;41, set ¢; <—J
eventually the condition ¢; + 1 # ¢j41 will occur. '

L4. [Done?] Terminate the algorithm if j > ¢.
L5. [Increase c;.] Set ¢; - ¢; + 1 and return to L2. |
The running time of this algorithm is not difficult to ana

¢j < j — 1 just after visiting a combination for which ¢j+1 °
number of such combinations is the number of solutions t0 t4

NiZace >\ i Gy et >4

GENERATING ALL COMBINATIONS 359

1 quivalent to a (t — j)-combination of the n — j objects
esignment ¢; < j—1 occurs exactly (Tt’:]]) times. Summing
. that the loop in step L3 is performed

)= (e () ()= () o

n! n! 1
b - (s+1>!<t—1)!/:e‘!a TFE (%)

‘ ratio is less than 1 when ¢ < s, so Algorithm L is quite

t/(s + 1) can be embarrassingly large when ¢ is near n
Algorithm L occasionally sets c; «— j — 1 needlessly, at
equals j — 1. Further scrutiny reveals that we need not
e index j that is needed in steps L4 and L5, since the correct
n be predicted from the actions just taken. For example,
sed c4 and reset czcacy to their starting values 210, the next
evitably increase cg. These observations lead to a tuned-up

,hm:

ico graphic combinations). This algorithm is like Algorithm L,
issumes, for convenience, that t < n.

¢ j — 1 for 1 < j < t; then set ¢;41 + n, cty2 + 0, and

 point j is the smallest index such that c¢; 41 > j.) Visit the
+..c2¢;. Then, if j > 0, set z < j and go to step T6.

' +1 < ¢y, set ¢; < c¢; + 1 and return to T2. Otherwise set
B 2and < c; + 1. e — cit {, sétij <7+ 1 and

tate the algorithm if j > .
P €j <z, j < j—1, and return to T2. |

- lf and only if ¢; > 0, so the assignments in step T4 are
_rCISe 6 carries out a complete analysis of Algorithm T.
&l‘fimeter n appears only in the initialization steps L1
% C_lpal parts of Algorithms L and T. Thus we can think
-atn%g thfe first () combinations of an infinite list, which
8 simplification arises because the list of t-combinations
7.‘7V1th the list for n things, under our conventions; we have
e order on the decreasing sequences c; . .. c; for this very
g with the increasing sequences c; . . . Ce

foticed another pleasant property of Algorithms L and T
Mathematjcs, edited by E. F. Beckenbach (1964), 27-30]:

360 COMBINATORIAL SEARCHING

Theorem L. The combination c; .. .cacy is visited after exact x

Ct C2 1
() ezt ol)b g
other combinations have been visited.

Proof. There are (%) combinations c}...chc; with ¢ = ¢ for;.'
¢, < ¢, namely c; ... cg41 followed by the k-combinations of {0’;’

When t = 3, for example, the numbers

2 1 0y (3 1 0y (3 2 0
G+G)+Q), G+G+Q) G+G)+Q) -, G)+(
that correspond to the combinations cscac; in Table 1 simply :
sequence 0, 1, 2, , 19. Theorem L gives us a nice way to %
combinatorial number system of degree t, which represents eve
integer N uniquely in the form]

n ng ny 1

R (tt)+”'+(2)+ (1) ™.

[See Ernesto Pascal, Giornale di Matematiche 25 (1887), 45—49;
Binomial trees. The family of trees T,, defined by ‘

T0=.7 Tn: ml

To 13 e T

arises in several important contexts and sheds further light'}
generation. For example, T} is ;

and Ty, rendered more artistically, appears as the frontispi-
this series of books. b

Notice that T}, is like T),_1, except for an additional copy ©
T;, has 2" nodes altogether. Furthermore, the number of nod:
binomial coefficient (7); this fact accounts for the name “binom
the sequence of labels encountered on the path from the roo®
level ¢ defines a combination ¢; . .. ¢1, and all combinations O
order from left to right. Thus, Algorithms L and T can be regat
to traverse the nodes on level ¢ of the binomial tree T,. 1

